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ABSTRACT

Despite the advance of network technologies in the past decade, providing video services to

a large number of users remains a major technical challenge. This is especially true when it

comes to serving high-definition videos. This thesis makes two contributions towards providing

large-scale and cost-effective video services. 1) We consider the problem of periodic broadcast

of popular videos in client/server video systems and present two novel techniques. Our research

advances the state of the art with a segmentation rule that can generate a series of broadcast

designs, among which we can choose the one that results in the smallest broadcast latency.

We show that this rule allows us to design the broadcast technique that is the fastest up to

date. 2) We then look at the problem of service scheduling in fully distributed peer-to-peer

video systems, where a large number of hosts collaborate for the purpose of video sharing. Our

proposed technique allows a client to be served by a server that is beyond its own file lookup

scope and can dynamically adjust client and server matches as new video requests arrive in

the system. Our performance evaluation shows that these features dramatically improve the

system performance to a large extent in terms of reducing service latency under a range of

simulation settings.
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CHAPTER 1. Introduction

The advance of network technologies has made video services possible over the Internet.

Indeed, the last decade has seen a booming of video-hosting websites such as www.youtube.com.

According to (4), over 4 billion videos are viewed every day and over 3 billion hours of video

are watched every month on Youtube. Traditional television broadcast companies (e.g., Fox

(2), ABC (1), and NBC (3)) are now also hosting video clips on the Internet.

However, the quality of videos available on today’s Internet is usually low. Unlike regular

files, videos are large in size; streaming a video to a remote client takes a substantial amount of

server and network bandwidth. A typical video server can sustain only a very limited number

of concurrent video streams. This is especially true when it comes to serving high-definition

videos. This problem, known as server bottleneck, has been the driving factor that limits the

scalability of video services.

Since early 1990, much research has been done towards mitigating the problem of server

bottleneck. The proposed techniques can be classified into two categories depending on the

targeted system architecture:

• Client/Server (C/S): Videos are stored in one or more dedicated servers, and all client

requests are directed to these servers. Representative techniques in this category include

on-demand multicast (16)(24)(19) and periodic broadcast (49)(26)(23). These schemes

leverage the facility of IP multicast to improve the scalability of video services by allowing

many clients to share a single server stream.

• Peer-to-Peer (P2P): Here a number of hosts collaborate to provide video services. These

hosts are peers to each other in the sense that a host can be a client that receives a video

and also functions as a server by providing the video to another client. Without relying
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on IP multicast, this strategy achieves the effectiveness of IP multicast by allowing a

single source stream to be buffered and forwarded to serve many clients. Representative

techniques in this category include (42), (13), (40), (15), (47), and (9).

This thesis makes two contributions towards providing large-scale and cost-effective video

services:

• We present two novel techniques namely CCA+ and CCB, for efficient periodic broadcast

of popular videos under the C/S architecture. Although a number of periodic broadcast

techniques have been developed, these schemes are designed in an ad hoc manner – it just

happens that they work; it is not clear why they are designed in that way. Moreover,

most of them are designed with a specific requirement on client bandwidth. If client

bandwidth is less than required, they do not work. On the other hand, if client bandwidth

is more than required, they cannot take advantage of the extra bandwidth. Our proposed

techniques provide an answer to these problems. An important contribution of this work

is, we discover a segmentation rule that allows us to find a series of broadcast designs for

a particular setting of client bandwidth. More specifically, given a client bandwidth of c

times video playback rate, we can have c! = c×(c−1)×· · ·×1 different ways to partition a

video. Among these c! segmentation approaches, we can then choose the one that results

in the smallest broadcast latency to broadcast a video. We prove the correctness of our

techniques and compare their performance with that of several representative approaches.

• We look at the problem of service scheduling in peer-to-peer video systems. Such systems

have two features in general: 1) a video is usually available on many participating hosts,

and 2) different hosts typically have different sets of videos, though some may partially

overlap. From a client’s perspective, it can be served by any host having the video it

requests. From a server’s perspective, it can be used to serve any client requesting the

videos it has. Thus, an important question is which servers should be used to serve

which clients in the system? We refer to this problem as service scheduling and show that

different matches between clients and servers can result in significantly different system

performance. Finding a right server for each client is challenging not only because a client
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can choose only the servers that are within its limited search scope, but also because

clients arrive at different times, which are not known a priori. In our work, we address

these challenges with a novel technique called Shaking. While the proposed technique

makes it possible for a client to be served by a server that is beyond the client’s own

search scope, it is able to dynamically adjust the match between the servers and their

pending requests as new requests arrive. Our performance study shows that our new

technique can dynamically balance the system workload and significantly improve the

overall system performance.

The rest of this thesis is organized as follows. We present new broadcasting techniques in

Chapter 2 and our service scheduling approach for P2P video services in Chapter 3. Finally

we conclude our thesis in Chapter 4.
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CHAPTER 2. Two Novel Techniques for Periodic Video Broadcast

A straightforward way to implement a video-on-demand system is using client/server ar-

chitecture. Here a central server stores all videos and serves all client requests. The server

organizes its resources into a number of channels, each capable of sustaining one video stream.

Due to the nature of video data, the number of channels available to a video server is usually

very limited. If the server simply allocates a channel to serve each client request, the chan-

nels will be exhausted quickly, in which case future requests need to wait until some channel

becomes available again.

The challenges of addressing the above server bottleneck problem are twofold. First, a chan-

nel should be able to serve as many clients as possible. This is to maximize server throughput.

Second, a client request should be served as soon as possible. This is to minimize service la-

tency. Towards these two seemly conflicting goals, much work has been done in the past decades

to leverage IP multicast so that a single video stream can be shared by multiple clients. The

proposed techniques can be classified into two categories:

• On-demand Multicast (e.g., (16), (24), (19)): The server maintains a service queue and

all client requests are first placed in the queue. When a channel becomes available, the

server selects a video and all clients requesting the video are served using one multicast.

• Periodic Broadcast (e.g., (49), (26), (23)): Instead of waiting for client requests, the server

broadcasts a video repeatedly using one or more channels. All clients requesting for the

video tune to the channel(s) to download the video.

In general, on-demand multicast is more suitable for less popular videos. For very popular

videos, periodic broadcast is a better choice. To achieve the best performance, the server can

employ a hybrid of these techniques. Specifically, it can reserve a fraction of its channels for on-
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demand multicast and the rest for periodic broadcast. Since most of the demand (e.g., 80%) is

typically for a few (e.g., 10% to 20%) very popular videos (16)(17), the effectiveness of periodic

broadcast techniques is very crucial to the overall system performance. In this part of thesis,

we focus on periodic broadcast. We will review existing techniques, review their limitations,

and then present two new approaches.

2.1 Existing Techniques and Their Limitations

The earliest periodic broadcast technique is staggered broadcasting studied in (16)(17).

Given a broadcast bandwidth n times of a video’s playback rate, this scheme broadcasts the

video every |v|
n

time units, where |v| is the video length. Since it requires each client to have

only one-channel receiving bandwidth and does not need buffer at receiving ends, this scheme

is low-cost in terms of client implementation. However, it can reduce the broadcast period only

linearly with respect to the increase of broadcast bandwidth.

It was first observed in (49) that more efficient broadcast can be achieved when clients have

a higher receiving bandwidth. This observation has inspired a series of advanced techniques,

including Skyscraper Broadcasting (SB) (26), Harmonic/Pagoda Broadcasting (28)(36)(35)(34)

(HPB), Client-Centric Approach (CCA) (23)(25), Greedy Disk-Conserving Broadcasting (GDB) (20),

just to name a few. The design of these techniques shares the following characteristics:

• Channel design: The bandwidth of the server is divided into a number of logical chan-

nels, each of which can deliver video data at some specific rate.

• Video segmentation: The video file is divided into a number of segments.

• Broadcast schedule: Each video segment is repeatedly broadcast on a specific channel

at some frequency.

• Playback strategy: Each client has a number of data loaders, each of which tunes into

its pre-assigned channels at different times to download the corresponding video segments.

As the segments are downloaded and stored in a disk buffer, they are rendered onto the

screen in order for playback.
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• Continuity Principle: The size of each segment and its broadcast frequency are care-

fully arranged in such a way that the following continuity principle is guaranteed: Once a

client starts to download the first segment, it can always have access to the next segment

before finishing consuming the current segment.

We explain the above concept using Client-Centric Approach (CCA) (23) as an example. In

this scheme, each channel has the same bandwidth, which can sustain one video stream at its

regular playback rate. To broadcast a video over k channels, CCA partitions the video into k

segments, S1, S2, ..., and Sk, each being broadcast repeatedly on one channel. Assuming each

client has c data loaders, each of which can download data from one channel at its streaming

rate, the size of Si, denoted as |Si|, is determined using the following formula:

|Si| =























1, if i = 1,

2 · |Si−1| if i mod c 6= 1,

|Si−1| if i mod c = 1.

As an example, consider k = 6 and c = 3 (i.e., six channels are used to broadcast and clients

can receive data from three channels simultaneously). In this case, the video is partitioned

into six segments: S1, S2, S3, S4, S5, and S6. The sizes of them are 1, 2, 4, 4, 8, and 16,

respectively. We will refer to [1, 2, 4, 4, 8, 16] as a broadcast series corresponding to k = 6 and

c = 3. Figure 2.1 shows a broadcast of this video.

S1 S2 S3 S4 S5 S6

channel 3

channel 4

channel 5

channel 6

channel 2

(b) Broadcasting Scheme for CCA

(a) Segmentation for CCA

channel 1

Figure 2.1 Client-Centric Approach (k=6, c=3)
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In CCA, the k segments are organized into dk
c
e groups: the first c segments form the first

group, the next c segments form the second group, ..., and the last k − bk
c
c · c segments form

the last group. These segments are downloaded group by group. To download segments in one

group, a client listens to all corresponding channels (i.e., one data loader for one channel) and

downloads a segment as soon as a new broadcast of the segment starts. After the client finishes

downloading the last segment in a group, it continues to download the segments in the next

group. As soon as the client has access to S1, it can start to playback the video.

The first property ensures the playback continuity for the segments within one group. It is

possible that a client may have to download all segments within one group simultaneously, in

which case the client uses all its receiving bandwidth. On the other hand, the second property

guarantees that after downloading one group of segments, the client can always shift smoothly

to download the first segment in the next group. Since the last segment, say Si, in one group

is made to be the same size as the first segment Si+1 in the next group, a new broadcast of

Si+1 always starts right after the current broadcast of Si finishes.

The research problem of periodic broadcast design is about video segmentation, i.e., what

size should be chosen for each segment. As the size of the first segment determines the broadcast

latency, it should be made as small as possible, under the condition that the continuity principle

is not violated. To segment a video, two factors needs to be considered: broadcast bandwidth

and client bandwidth. In all existing techniques, when more bandwidth is used to broadcast a

video, the first segment becomes smaller, because more video segments are created. However, it

is not true that they can all make the first segment smaller with a higher client bandwidth. In

fact, most of them are designed with some rigid requirements on client bandwidth. For example,

the aforementioned SB assumes the receiving bandwidth of each client is two times of video

playback rate. At the other extreme, techniques like HPB and their variations (41)(51)(48)

would require each client to have a bandwidth that is equal to the server broadcast bandwidth.

The former cannot do any better with a higher client bandwidth, whereas the latter simply

does not work when the client bandwidth is not equal to the broadcast bandwidth. There

are exceptions, though, including CCA and GDB. These schemes are more flexible with client

bandwidth in the sense that they provide a specific segmentation approach for a particular client
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bandwidth. Given a fixed broadcast bandwidth, their segmentation can make the first segment

smaller with an improved client bandwidth. As a result, the more client bandwidth, the more

efficient broadcast can be achieved. However, like all others, these schemes are designed in a

rather ad-hoc manner – it just happens that the playback continuity is guaranteed with the

sizes of video segments they choose. Given a video segmentation, one can verify if it ensures

the playback continuity, but it is unclear if there is any rule that can be used to guide video

segmentation.

2.2 Proposed Techniques

In this section, we present two new techniques, CCA+ and CCB (Client-Centric Broad-

cast). The first one enhances CCA to further leverage client bandwidth for more efficient video

broadcast. The new scheme reduces the broadcast latency up to 50% as compared to CCA.

The second technique is a generalized broadcast scheme. At the core of this scheme is a seg-

mentation rule that allows us to design a series of broadcast techniques for a particular setting

of client bandwidth. Specifically, given c data loaders at the client side, this approach generates

c! different periodic broadcast designs. Among them, we can then choose the one that results

in the least broadcast latency. CCB, to our knowledge, is the fastest broadcast technique up

to date. We prove the correctness of these two techniques and show its performance advantage

as compared with some representative existing techniques.

2.3 Technique 1: CCA+

2.3.1 Motivation Example

Since the first segment determines the broadcast latency, the key to minimize broadcast

latency is to make the broadcast series grow as faster as possible, under the condition that the

playback continuity is guaranteed. In CCA, the first segment in one group is made the same

size as the last segment in the previous group. We will adopt the same strategy to ensure that

a client can always continue to download the next group after downloading the current group.

Our research focuses on how to grow the sizes of the segments within each group as fast as
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possible.

As a motivation example, let’s assume client receiving bandwidth is 2 channels. Let Si,

Si+1, Si+2, and Si+3 be four consecutive segments, where Si and Si+1 are in one group and

Si+2 and Si+3 in the next group. Suppose the sizes of Si and Si+1 are known and their playback

continuity is guaranteed. Since Si+2 is the first segment in a group, we make it the same size

as Si+1, i.e., |Si+2| = |Si+1|. The question now is, what should be the size of Si+3? Our key

observation is that, as long as |Si+3| satisfies the following two conditions: 1) it is a multiple

of |Si|, and 2) it is no larger than |Si| + |Si+1| + |Si+2|, a client can always play back the

four segments continuously. If |Si+3| is a multiple of |Si|, then there are only three possible

broadcast alignments of these two segments: 1) the broadcast of Si and Si+3 starts at the

same time, 2) a new broadcast of Si+3 follows right after a broadcast of Si finishes, and 3) a

broadcast of Si starts and finishes in between a broadcast of Si+3. The three alignments are

illustrated in Figure 2.2. We now show that a client can always start to download Si+3 before

finishing playing back Si, Si+1, and Si+2:

• Alignment 1: Since Si and Si+3 start at the same time, and |Si+3| is no larger than |Si|+

|Si+1|+|Si+2|, a new broadcast of Si+3 must have started before a client finishes consuming

Si, Si+1, and Si+2. In this case, after the client finishes downloading the current broadcast

of Si+1, it proceeds to download Si+2 and Si+3 as soon as their broadcast starts.

• Alignment 2: Since a new broadcast of Si+3 starts right after the current broadcast of Si

finishes, a client can use the same data loader to download Si+3 after downloading Si.

• Alignment 3: Since the current broadcast of Si+3 starts earlier than that of Si and |Si+3| ≤

|Si|+|Si+1|+|Si+2|, a new broadcast of Si+3 will start within the next |Si|+|Si+1|+|Si+2|

time units. Thus, after downloading Si, a client can use the same data loader to download

Si+3.

According to the above observation, we can make the size of Si+3 equal to the largest

number that is a multiple of |Si| but no larger than |Si| + |Si+1| + |Si+2|. We now consider

the broadcast series. To start with, we set the sizes of the first two segments, S1 and S2, to be

1 and 2, respectively. Then we have |S3| = 2, since S3 is the first segment in the next group.
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S
i

Si+2

Si+1

Si+3

Si+2

Si+1

Si+3

(a) Alignment 1: A broadcast of Si and Si+3 starts at the same time

S
i

Si+2

Si+1

Si+2

Si+1

Si+3

(b) Alignment 2: A broadcast of Si+3 starts right after a broadcast of  Si finishes

Si

Si+2

Si+1

Si+2

Si+1

S
i+3

(c) Alignment 3: A broadcast of S
i 
starts and finishes in between a broadcast of  S

i+3

Si+3

S
i+3

These four broadcasts are
downloaded by the client

Figure 2.2 All Possible Broadcast Alignments of Si and Si+3
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As for |S4|, we can make it 5, which is the largest number that is a multiple of |S1| and no

larger than |S1| + |S2| + |S3|. We can then have |S5| = 5. Knowing |S3|, |S4|, and |S5|, we

can make |S6| equal to 12, the largest number that is a multiple of |S3| and no larger than

|S3| + |S4| + |S5|. Similarly, we can compute the sizes of other segments, |S7|, |S8|, · · · , and

derive the following broadcast series:

[1, 2, 2, 5, 5, 12, 12, 25, 25, 60, 60, 125, 125, 300, 300, . . . ]

The above broadcast series is faster than CCA’s broadcast series for a client with 2 channels

of receiving bandwidth. The broadcast series of CCA for such a case is given by:

[1, 2, 2, 4, 4, 8, 8, 16, 16, 32, 32, 64, 64, 128, . . . ]

It is worth mentioning that the new broadcast series grows faster than that from Skyscraper

Broadcasting (26), which was designed specifically for 2-channel receiving bandwidth and until

now is the fastest one in this setting:

[1, 2, 2, 5, 5, 12, 12, 25, 25, 52, 52, 105, 105, 212, 212, . . . ]

2.3.2 Design of CCA+

The above motivation example allows us to develop a more efficient broadcast technique.

We will call this scheme CCA+, alluding to the fact that it is an improvement of the original

CCA. Given k channels of broadcasting bandwidth and c channels of receiving bandwidth,

CCA+ partitions a video into k segments and organizes them into dk
c
e groups. Also similar to

CCA, the new scheme sets the sizes for the first c segments to be 1, 2, 22, ..., 2c−1, and makes the

first segment in each group the same size as the last segment in the previous group. However,

for each of other segments Si, its size is determined by the sizes of its previous c+1 segments,

Si−c−1, Si−c, Si−c+1, · · · , and Si−1. Specifically, the size of Si is set to be the largest multiple

of |Si−c−1| that is not larger than
∑i−1

j=i−c−1 |Sj |. More formally, CCA+ uses the following

formula to generate the broadcast series:

|Si| =























2i−1, if 1 ≤ i ≤ c,

|Si−1|, if (i) mod c = 1 and i > c,

b
∑i−1

j=i−c−1 |Sj |

|Si−c−1|
c · |Si−c−1| otherwise.
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At receiving ends, clients also download video segments group by group. However, the

data loader used to download the ith segment in one group will be used to download the

(i + 1 mod c)th segment in the next group. We now prove that a client can always play back

the video continuously. Clearly, the playback continuity for the first c segments is guaranteed,

and after the client finishes downloading the cth segment, it can always proceed to download

the next segment. So what we need to prove is, if a client can playback c + 1 consecutive

segments continuously, then it can always start to download the next segment before it finishes

playing back the c+ 1 segments.

Let Si, Si+1, . . . , Si+c, and Si+c+1 be any c + 2 consecutive segments and the playback

continuity of the first c+ 1 segments are known to be guaranteed. If |Si+c+1| = |Si+c|, then a

client can download the two segments sequentially using the same data loader, because a new

broadcast of Si+c+1 always starts right after a broadcast of Si+c finishes. If |Si+c+1| 6= |Si+c|,

then according to the above formula, |Si+c+1| must be a multiple of |Si|. As such, there are only

three possible broadcast alignments for Si and Si+c+1, as showed in Figure 2.3. We analyze

them as follows:

• Alignment 1: Si and Si+c+1 start at the same time. Because the client can access only c

channels simultaneously, it cannot download the current broadcast of Si+c+1. From the

time when the client starts to download Si, it will take
∑i+c

j=1 |Sj | time units to play back

all the first c + 1 segments. Since |Si+c+1| ≤
∑i−1

j=i−c−1 |Sj |, a new broadcast of Si+c+1

will start in the next
∑c+1

i=1 |Si| time units. It is also true that, because |Si| ≤ |Si+c+1|,

the new broadcast of Si+c+1 will start after the current broadcast of Si. As such, the

client can download Si and then Si+c+1 using the same data loader.

• Alignment 2: A new broadcast of Si+c+1 starts right after a broadcast of Si finishes. In

this case, after the client finishes downloading Si, it can use the same data loader to

download Si+c+1. Since the client has access to Si+c+1 before consuming the previous

c+ 1 segments, the playback continuity is guaranteed.

• Alignment 3: A broadcast of Si starts and finishes in between a broadcast of Si+c+1.

Since |Si+c+1| is no larger than
∑i+c

j=1 |Sj| and is a multiple of |Si|, the current broadcast
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of |Si+c+1| must finish in the next
∑i+c

j=2 |Sj| time units. Thus, before the first c + 1

segments are consumed completely, a new broadcast of Si+c+1 must have already started.

Again, in this case, the data loader used to download the current broadcast of Si can be

used to download the next broadcast Si+c+1.

Figure 2.3 Three possible alignments of Si and Si+c+1
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2.4 Technique 2: CCB

2.4.1 Segmentation Rule

As mentioned earlier, the key to minimize broadcast latency is to make the broadcast series

grow as fast as possible, but under the condition that the playback continuity is guaranteed.

Let Si, Si+1, . . . , and Si+c−1 be a group of c consecutive segments and a client with c data

loaders can start to play back as soon as it has access to a new broadcast of Si. The question

is, what is the maximum size of the next segment, Si+c? Here we introduce a rule that can help

answer this question. Our key observation is, if a client uses the data loader which downloads

segment Sj (i ≤ j ≤ i + c − 1) to download Si+c, then the playback continuity of the c + 1

segments is guaranteed as long as the size of Si+c satisfies the following two conditions: 1) it is

a multiple of |Sj |, and 2) it is no larger than
∑i+c−1

m=j |Sm|.

We refer to the above rule as a Segmentation Rule. If |Si+c| is a multiple of |Sj |, then there

are only three possible broadcast alignments for these two segments: 1) the broadcast of Sj

and Si+c starts at the same time, 2) a new broadcast of Si+c follows right after a broadcast

of Sj finishes, and 3) a broadcast of Sj starts and finishes during a broadcast of Si+c. The

three alignments are illustrated in Figure 2.3. We now show that a client can always start to

download Si+c before finishing the playback of Si+c−1:

• Alignment 1: Sj and Si+c start at the same time. Because the same data loader is used

to download the two segments, a client cannot download the current broadcast of Si+c.

From the time when the client starts to download Sj, it will take
∑i+c−1

m=j |Sm| time units

to finish the playback of segment Si+c−1. Since |Si+c| ≤
∑i+c−1

m=j |Sm|, a new broadcast

of Si+c will start no later than
∑i+c−1

m=j |Sm| time units. On the other hand, because

|Sj | ≤ |Si+c|, the new broadcast of Si+c can start only after the current broadcast of Sj .

As such, in this case, the client can download Sj and then Si+c sequentially.

• Alignment 2: A new broadcast of Si+c starts right after a broadcast of Sj finishes. In

this case, after the client finishes downloading Sj , it can use the same data loader to

download Si+c. Since the client has access to Si+c before consuming Si+c−1, the playback
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continuity is guaranteed.

• Alignment 3: A broadcast of Sj starts and finishes in between a broadcast of Si+c. Since

|Si+c| is no larger than
∑i+c−1

m=j |Sm| and is a multiple of |Sj |, the current broadcast of

|Si+c| must finish in the next
∑i+c−1

m=j+1 |Sj| time units. Thus, before the i+ c− j segments

are consumed completely, a new broadcast of Si+c must have already started. Again, in

this case, the same data loader used to download the current broadcast of Sj can be used

to download the next broadcast of Si+c.

2.4.2 Design of CCB

The segmentation rule allows us to design a series of segmentation approaches, given a

particular setting of client bandwidth. As an illustration example, let’s assume each client has

two data loaders (i.e., c = 2). In this case, every two segments form a group. For the two

segments in the first group, we can make |S1| = 1 and |S2| = 2. After a data loader finishes

downloading one segment in a group, it will proceed to download some segment in the next

group. We will use the terms download schedule to refer to an assignment of data loaders to

download segments in two consecutive groups. When c = 2, there are two download schedules,

and for each schedule, we can have one particular broadcast series:

• Schedule 1: The data loader which downloads the first segment in one group is assigned

to download the first segment in the next group, and the data loader which downloads

the second segment in one group will download the second segment in the next group.

Since S3 is downloaded by the data loader that downloads S1, we can make its size equal

to 3, the largest number that is a multiple of |S1| but not larger than |S1|+ |S2|. Since

S4 is downloaded by the data loader that downloads S2, we can make its size equal to

the largest number that is a multiple of |S2| but not larger than |S2|+ |S3|. As such, we

have |S4| = 4. Since the playback continuity of S3 and S4 is guaranteed, we can then

determine the size of the segments in the next group, S5 and S6, and so on so forth. As

such, we have the following broadcast series: [1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96,

128, 192, 256, . . . ].
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• Schedule 2: The data loader which downloads the first segment in one group is assigned

to download the second segment in the next group, and the data loader which downloads

the second segment in one group will download the first segment in the next group. Since

S3 is downloaded by the data loader that downloads S2, we can make its size equal to

that of S2. As for S4, since it is downloaded by the data loader that downloads S1, we

can make its size equal the largest number that is a multiple of |S1| but not larger than

|S1|+ |S2|+ |S3|. So we have |S4| = 5. Likewise, we can determine the size of the segments

group by group and have the following broadcast series: [1, 2, 2, 5, 5, 12, 12, 25, 25, 60,

60, 125, 125, 300, 300, . . . ].

Note that both of the above broadcast series are faster than the one from CCA under the

same setting: [1, 2, 2, 4, 4, 8, 8, 16, 16, 32, 32, 64, 64, 128, 128, 256, . . . ]. The series under

schedule 2 is same as the broadcast series of CCA+ under the same setting. This series grows

faster than that from Skyscraper Broadcasting, [1, 2, 2, 5, 5, 12, 12, 25, 25, 52, 52, 105, 105,

212, 212, . . . ], which was designed specifically for 2-channel client bandwidth and until now is

the fastest one in this setting. Since both new broadcast series guarantee playback continuity,

we can choose the faster one for video segmentation and let clients download segments using

the corresponding download schedule.

In general, given a set of c data loaders, there are a total of c! = c × (c − 1) × · · · × 1

different download schedules. This is due to the fact that after a data loader downloads one

segment in a group, it can be used to download any segment in the next group. For example,

when c = 3, there are 3 × 2 × 1 download schedules, as illustrated in Figure 2.4. We will use

an array of l[1..c] to denote a schedule that indicates which segment in the previous group was

downloaded by the data loader used to download the jth segment in the current group. As

mentioned earlier, any set of c segments among the k segments of the video, form one group.

The next set of c segments form the next group. If the data loader that downloads the ith

segment in the current group is the one that downloads the jth segment in the previous group,

we have l[i] = j. For example, for schedule 1 in Figure 2.4, we have l[1] = 1, l[2] = 2, and

l[3] = 3; similarly, for schedule 6, we have l[1] = 2, l[2] = 3, and l[3] = 1. Given a schedule
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Figure 2.4 When c = 3, there are six different download schedules

l[1..c], we can compute the size of each video segment using the following algorithm, where k

is the number of broadcast channel:

According to the segmentation rule mentioned earlier, two conditions must be satisfied

in order to ensure continuity: 1) |Si| should be a multiple of |Si−c+l[i]|. 2) It should be no

larger than the sum of the sizes of the segments from Si−c+l[i] till Si, which is denoted by the

variable sum in algorithm 1. The value of |Si| is chosen such that |Si| is the largest multiple of

|Si−c+l[i]| that is lesser than sum. Given a client bandwidth of c channels, we can enumerate

all c! schedules. For each of these schedules, we apply the above algorithm to generate the

corresponding broadcast series. The fastest one is then chosen for video segmentation. We

refer to this technique as Client-Centric Broadcast (CCB). To play back the video, a client first

retrieves the download schedule from the server, and then applies its data loaders to receive

the segments accordingly.
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Algorithm 1 Segmentation(k, c, l[1..c])

Let S1, S2, .., Sk be the set of k segments

for all i = 1 to c− 1 do

|Si| = 2i−1

end for

for all i = c to k do

sum = 0

for all m = i− c+ l[i] to i− 1 do

sum = sum+ |Sm|

end for

|Si| =
⌊

sum
|Si−c+l[i]|

⌋

∗ |Si−c+l[i]|

end for

2.5 Performance Study

For performance evaluation, we compare CCB, CCA, CCA+, and GDB. To our knowledge

these are the only ones up to date that can leverage client bandwidth for more efficient broad-

cast. Unlike others, GDB requires client receiving bandwidth to be at least 3 channels. It

uses the following integer-valued partition function f(n) to generate broadcast series, where i

denotes the number of video streams that a client can receive simultaneously:

fGDB(i)(n) =











2n−1, if n ≤ i,

b
(
∑n−1

j=n−i+1 fGDB(i)(j)

fGDB(i)(n−i+1) c ∗ fGDB(i)(n− i+ 1), if n > i

When the client receiving bandwidth is 2 channels, we also compare the performance of

CCB, CCA+ and CCA to that of SB. Since we are primarily interested in the relative per-

formance of these techniques, we assume the system has only one video. If the system has

n videos, we can divide the server bandwidth into n parts and create n virtual servers, each

serving one video. Thus, the results reported in this section are also valid for systems with

many videos. We choose broadcast latency as our performance metric and will focus on how

this is affected by client bandwidth and server bandwidth. Our study uses a 120-minute video

and varies the server bandwidth from 2 to 10 channels, which we believe is large enough to

show the performance trend.
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2.5.0.1 Effect of Server Bandwidth

When the client bandwidth is 2 channels, the performance results of SB, CCA, CCA+ and

CCB are plotted in Table 2.1. We do not include GDB in this study since it does not work

in this setting of client bandwidth. The figure shows that as the server bandwidth increases,

the broadcast latency under all four techniques reduces sharply. In all settings, however, CCB

outperforms CCA to a large extent. For example, when the server bandwidth is 5 channels,

CCB reduces the broadcast latency to 450 seconds. In contrast, CCA incurs 553 seconds. This

study also shows that CCB performs no worse than SB and CCA+ in all settings. It is worth

mentioning that up to date, SB and CCA+ are the two fastest broadcasting techniques when

client bandwidth is 2 channels.

Server Bandwidth
Broadcast Latency (seconds)

SB CCA CCA+ CCB

2 2400 2400 2400 2400

3 1440 1440 1440 1440

4 720 800 720 720

5 480 553.84 480 450

6 266.66 342.85 266.66 266.66

7 184.61 248.27 184.61 184.61

8 112.5 160 112.5 112.5

9 80.89 118.03 80.89 80.89

10 51.06 77.41 48.32 48.32

Table 2.1 Client bandwidth = 2 channels

Table 2.2 shows the performance results of GDB, CCA, CCA+ and CCB when the client

bandwidth is 3 channels. It shows that CCB performs significantly better than CCA. For

example, when the server bandwidth is 10 channels, the broadcast latency under CCB and CCA

is 17 seconds and 34 seconds, respectively. The performance gap between the two techniques

actually increases as the server bandwidth increases. CCA also outperforms CCA+ and GDB

in all settings. When the client bandwidth is fixed at 4 channels, the performance results of

the four techniques are plotted in Table 2.3. It shows that when the server bandwidth is 10

channels, CCA, GDB, CCA+ and CCB guarantee a broadcast latency of 22, 14.9, 14.4 and 9.6
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seconds, respectively. In other words, CCB outperforms CCA by 140% and GDB and CCA+

by about 60% respectively.

Server Bandwidth
Broadcast Latency (seconds)

CCA CCA+ GDB CCB

2 2400 2400 2400 2400

3 1029 1029 1029 1029

4 654.54 654.54 654.54 514.28

5 378.94 327.27 342.85 276.92

6 205.71 171.42 232.25 156.52

7 141.17 116.12 130.90 88.88

8 86.74 63.16 91.13 51.06

9 48.97 33.8 55.81 29.87

10 34.12 23.07 40.22 17.30

Table 2.2 Client bandwidth = 3 channels

Server Bandwidth
Broadcast Latency (seconds)

CCA CCA+ GDB CCB

2 2400 2400 2400 2400

3 1029 1029 1029 1029

4 480 480 480 480

5 313.04 313.04 248.27 240

6 184.61 156.52 135.84 124.13

7 101.40 80 77.41 65.45

8 53.33 41.37 44.17 34.95

9 36.18 27.9 25.44 18.65

10 22.01 14.45 14.90 9.67

Table 2.3 Client bandwidth = 4 channels

2.5.0.2 Effect of Client Bandwidth

This study investigates the effect of client bandwidth on the broadcast latency. Again, the

video duration is set to be 120 minutes. We fixed the server bandwidth at 10 channels, and

varied the client receiving bandwidth from 2 to 10 channels. The results of the four techniques,

CCA, CCA+, CCB, and GDB are plotted in Table 2.4. As mentioned before, GDB does not
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work when the client receiving bandwidth is less than 3 channels. It shows that the CCB

remains the best performer, until the client receiving bandwidth becomes equal to the server

bandwidth. In that case, all these techniques have the same broadcast series (1, 2, 22, · · · , 2k−1).

Client Bandwidth
Broadcast Latency (seconds)

CCA CCA+ GDB CCB

2 77.41 48.32 N/A 48.32

3 34.12 23.07 47.05 17.3

4 22.01 14.45 14.9 9.60

5 13.66 10.02 9.31 8.05

6 13.25 9.60 7.78 7.39

7 12.52 9.44 7.28 7.15

8 11.26 9.39 7.10 7.07

9 9.38 9.38 7.05 7.04

10 7.03 7.03 7.03 7.03

Table 2.4 Server bandwidth = 10 channels
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CHAPTER 3. Shaking: A Scheduling Technique for P2P Video Services

An alternative way to build a VOD system is to apply the concept of peer-to-peer computing.

A host receiving a video stream can forward the stream to serve others. After it finishes

playing back, it can also cache the video and supply to future requests. As such, unlike in the

client/server architecture, hosts participating in P2P video services are peers to each other in

the sense that they can all contribute their resources to the whole community. This feature

effectively alleviates the problem of server bottleneck and can provide highly scalable video

services at a minimal cost.

The idea of P2P video services was first explored in (42) and (13). Since then, many

advanced techniques have been developed towards efficient and robust streaming (.e.g., tree-

based (27)(14)(46), mesh-based (18)(21)(7)(50), topology-awareness (30)(9)). In contrast to

existing research, we investigate the problem of service scheduling in fully distributed P2P

video systems. In the rest of this section, we explain the problem, discuss some closely related

work, and then present our solution.

3.1 Problem of Service Scheduling

Consider a decentralized P2P system that consists of a large number of hosts that collabo-

rate for the purpose of video sharing. Without causing ambiguity, we will simply use client and

server to refer to a host requesting a video and a host supplying a video, respectively. A client

uses some P2P file lookup technique (e.g., (32)(37)(44)(38)) to search a video. Typically, the

video is available on a number of servers. So the question is which server should be used to

serve the client? This problem, which we refer to as service scheduling, is complicated because

of several factors.
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First, from a client’s perspective, it should be served by the one with minimal service

latency. However, although a video may be available on many hosts in the system, a client

looking for the video usually can locate only a few, typically one, of them. The servers found

may not be able to provide the fastest service.

Second, even if each client can find all available server candidates, different matches between

clients and servers can result in significantly different performance results. As an example,

consider two servers, S1 and S2. S1 caches videos v1 and v2 while S2 has videos v1 and v3.

Given two clients, C1 and C2, requesting for v1 and v2, respectively, if C1 is served by S1, C2

will have to wait until S1 finishes serving C1. However, if C1 is served by S2, then C2 can be

served by S1 immediately. This problem is attributed to this fact: while a client may have a

number of hosts as its server candidates, a host can also be a server candidate to more than

one client – a host caching a number of files can be a server to any client requesting these files.

Third, clients request files at different times. Thus, the match between clients and servers

must be dynamically adjusted as clients arrive. This is particularly challenging in decentralized

P2P systems, where each client finds and chooses its server by its own. In the previous example,

when C1 arrives, it can choose either S1 or S2. It is the next request that determines which

server should be used to serve C1.

3.2 Related Work

There has been a rich literature on service scheduling research, starting from CPU schedul-

ing in operating systems (e.g., (31), (43), (12), (10)). Here we discuss the work related to video

services. The early work focuses on how to choose a video to serve. Here a central server is

used to serve all clients. The server maintains a queue and all service requests are first placed

in the queue. When the server has a free channel, it selects one of the requested videos in

the queue and sends the video to all its requestors using multicast. To decide which video to

select, Dan et al proposed First Come First Served (FCFS) and Maximum Queue Length First

(MQL) (16). The former selects the video with the oldest request to serve next. It treats each

video equally regardless of its popularity, but will result in lower system throughput. MQL

maximizes the system throughput by selecting the batch with the largest number of pending
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requests to serve first. It, however, is unfair since it favors more popular videos. Aggarwal

et al addressed this problem with a technique called Maximum Factored Queue length first

(MFQ) (6). This scheme improves on the FCFS and MQL policies by taking into account both

the waiting times of the requests and the popularity of the videos. When sufficient bandwidth

becomes available, MFQ selects the pending batch with the largest size weighed by the best

factor, (the associated access frequency)−
1
2 , to serve next. This scheme can achieve throughput

close to that of MQL with little compromise of its fairness. All these techniques assume all

clients are served by a single server and cannot be applied for our problem, which is how to

match clients and servers in order to minimize service latency.

In the context of P2P live streaming systems, there is research on how to build a transmission

schedule for a client. It is assumed that a video may be segmented and stored on multiple

servers. To download a video, a client may need to download its segments from multiple

sources. When a client joins a live streaming session and downloads different segments from

different servers, it is possible that some of the segments may miss their deadlines because of

the heterogeneous upload bandwidth of servers and their workload. So the problem is, given

a set of servers S1, S2, ..., Sn with uploading bandwidths b1, b2, ..., bn, how to build a schedule

for a client to receive segments Seg1, Seg2, ..., Segm within their deadlines such that the total

number of segments missing their deadlines is minimized? This problem has been proved to be

NP-complete (22). There are a number of heuristic solutions (e.g., (33), (5), (53), (22), (52),

(11)), but they are not applicable to our problem. They cannot help a client to find a server

that is outside of its search scope. Moreover, these techniques consider the download schedules

of video segments that belong to a same video. In contrast, our research aims at finding a good

match between clients and servers, where clients may be requesting different videos.

3.3 Proposed: Shaking

We assume a client C requesting a video V can simply call Search(V ) to locate a set

of servers caching V and will not concern the detailed implementation of this function. The

servers found through the lookup process form the client’s server pool, denoted as SPool(V ),

from which the client chooses one as its server. To request video V from server S, client C
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sends a command Request(C, V ) to the server. For simplicity, we also assume each server can

have at least one channel. The server maintains a service queue Q; and all arriving requests

are first appended to this queue. When a channel becomes free, the server schedules a pending

request for services in a FIFO manner, i.e., clients are served according to their arriving order.

Thus, given a number of channels and a list of pending requests, we can determine the service

latency of each request.

Suppose a client Ci requests a video Vi. The client can call Search(Vi) to find a set of server

candidates and then submit its request to the one, say S, that can provide the fastest service.

Since client requests are served according to the order of their arrival, Ci needs to wait until

S finishes serving all earlier requests. An important objective of our research is to reduce this

wait time. This goal can be achieved by trying to move the requests that arrived earlier at S

to other servers. Assume client Cj is in the service queue and the video it requests is Vj. Ci

can launch a lookup for Vj and check if any server found can provide Vj to Cj no later than S.

If there is such a server, say S′, then S′ can then be used to serve Cj. When a request is moved

out of S’s queue, all requests pending after this request, including Ci itself, will be served at

an earlier time. Since a video may last many minutes, the reduction on their service latency

can be significant.

Given a set of server candidates, a client can contact them for their pending requests and

try to find each of them a new server. We call this process as Shaking. Shaking makes it

possible for a client to be served by a server that is beyond the client’s search scope. In the

above example, S′ located by Ci may be invisible to Cj . Given a limited search scope, each

client may shake only a small number of servers. However, many small shakes, originating from

clients at different locations, together can have a global effect. Since each client can try to

shake its server candidates, a more demanded server may be shaken more frequently. Thus, the

pending requests in an overloaded server can be migrated gradually to other less loaded servers

in the system. Because each shake dynamically adjusts the match between clients and servers,

the mismatch caused by limited search scope and unpredictable client arrivals is effectively

addressed.

A challenge of implementing the above Shaking idea is the chaining effect. In Figure 3.1,
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Figure 3.1 Example

a client C trying to shake request [C1, V2] out of server S1 may find two servers, S2 and S3,

that have V2. Although these two servers cannot serve [C1, V2] earlier than S1, the client can

try to see if it can shake any pending requests out of S2 and S3. For example, it may launch

a search for V4 and find server S4, which is free of workload at this moment. This example

shows that in order to successfully move out a request, a client may need to shake a chain of

servers. The chain may even consist of loops, which happens when multiple requests pending

on different servers for a same video. In addition to the chaining issue, the order of shaking

also has significant impact on the shaking results. In the above example, we can move [C4, V4]

from S3 to S4, and then [C2, V2] and [C3, V3] from S2 to S3, and finally [C1, V2] from S1 to

S2. This shaking order allows S1 to serve client C immediately. However, if we move [C3, V3]

first from S2 to S4, client C will receive no benefit. We address these challenges with a 3-step

solution, building closure set, shaking closure set, and executing shaking plan.

3.3.1 Building Closure Set

A closure set is the maximum set of servers that a client can find to shake to minimize its

service latency. A client requesting a video V can use Algorithm 2 to build such a closure set.

The client first calls Search(V ) to find SPool(V ), i.e., a set of servers having video V , and

contacts each server S for its service queue. Then for each pending request [Ci, Vi] in the queue,

the client searches for SPool(Vi). Note that for each video, the client needs to search its servers

only once. Given the same lookup mechanism, the client can find only a fixed server pool for a



www.manaraa.com

27

particular video. The information about the servers and their pending requests found during

this process are stored locally.

Algorithm 2 BuildingClosureSet(V )

1: ClosureSet = ∅;

2: sList = ∅;

3: vList = ∅;

4: Launch Search(V ) to find SPool(V );

5: for all {S | S ∈ SPool(V ) } do

6: sList = sList
⋃

{S};

7: end for

8: while sList 6= ∅ do

9: for all {S | S ∈ sList } do

10: ClosureSet = ClosureSet
⋃

{S};

11: sList = sList− {S};

12: Contact S for its service queue Q;

13: for all {[Ci, Vi] | [Ci, Vi] ∈ Q and Vi /∈ vList } do

14: Launch Search(Vi) to find SPool(Vi);

15: for all {S′ | S′ ∈ SPool(Vi) and S′ /∈ ClosureSet } do

16: sList = sList
⋃

{S′};

17: vList = vList
⋃

{Vi};

18: end for

19: end for

20: end for

21: end while

3.3.2 Shaking Closure Set

Given a set of the servers and their service queues, the client now tries to find a shaking plan

that can minimize its service latency. A shaking plan is an ordered list of action items, each

denoted as T ([C, V ], Si, Sj], meaning that ”transfer [C, V ] from Si to Sj”. Recall that different

shaking orders can have significantly different results. Given a set of servers and their service

queues, the client can try different shaking orders to generate various shaking plans and then

choose the one that has the best result. Specifically, given a list of servers in SPool(V ), say S1,

..., Sn, the client can try each server as the start point of shaking and generate a shaking plan.

Each time it chooses a server, it first appends its request [C, V ] in the server’s queue and then

tries to transfer other requests to other servers. Trying to shake all servers allows the client
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to find out which one should be used as its server. Note that all such tries are done locally

without actually getting the servers involved.

In order to service a new request [Cx, Vx], a server say S from SPool(Vx) which can provide

the fastest service, is chosen and [Cx, Vx] is appended to its service queue. To provide [Cx, Vx]

with a faster service, all requests in S that arrived earlier should be shaken out, if possible. For

each earlier request [C, V ], Shake([C, V ], S) is called. When the Shake algorithm is invoked

on the first request, ShakingPool is initialized with the server in which the request is queued.

ShakingSet for all requests is initially empty. Algorithm 3 gives a formal description on how

to shake a given request [C, V ] which is currently queued in S. Latency([C, V ], S) denotes

the expected service latency of [C, V ] if it is served by S. ShakingPool is the set of servers

currently under shaking. SP lan denotes the shaking plan generated during this process.

Given a request [C, V ], the above algorithm finds SPool(V ) first and then checks if any

server in SPool(V ) can serve V no later than S. If there exists such a server, say S′, an action

T ([C, V ], S, S′) is appended to the shaking plan. If there is no server, it creates a ShakingSet

for this request, which contains all servers that are in SPool(V ), but not in ShakingPool.

Note that ShakingPool is the set of servers that are currently under shaking. The algorithm

then recursively tries to shake out each request in the service queue of the servers in [C, V ]’s

ShakingSet.

As an example, consider Figure 3.2. Suppose a client Cx requests video Vx and builds

a closure set that contains five servers, S1, S2, S3, S4, and S5. The videos cached by these

servers and their service queues are shown in the figure. Since Vx is cached only by S1, [Cx, Vx]

is added to S1’s service queue. Cx then tries to create a ShakingP lan so that it can be served

earlier. It first tries to shake out [C2, V2]. Since SPool(V2) contains {S1, S2} and S2 can serve

[C2, V2] earlier than S1, Cx adds an action T ([C2, V2], S1, S2) to ShakingP lan. Cx then tries

to shake out [C1, V1]. Since SPool(V1) contains {S1, S2, S3} and neither one of them can serve

[C1, V1] earlier than S1, Cx creates ShakingSet([C1, V1]), which contains {S2, S3}. {S2, S3} are

added to the ShakingPool. Cx starts to shake S2. SPool(V2) contains {S1, S2}. However, S1

cannot serve V2 earlier. So Cx creates ShakingSet([C2, V2]). Since ShakingSet([C2, V2]) = ∅

as S1 is in ShakingPool, Cx goes ahead to shake S3. SPool(V3) contains {S3, S4}. Cx adds
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Algorithm 3 Shake([C, V ], S, ShakingPool)

1: Get SPool(V )

2: S′ ⇐ {s ∈ SPool(V ) and latency([C, V ], s) ≤ latency([C, V ], S) and latency([C, V ], s) is

the least among SPool(V ) }

3: if S′ 6= ∅ then

4: Append {T([C,V],S,S’)} to SP lan

5: return S’

6: else

7: ShakingSet([C, V ]) = {s | s ∈ SPool(V ) and s /∈ ShakingPool }

8: if ShakingSet([C, V ]) = ∅ then

9: return NULL;

10: end if

11: for all {s | s ∈ ShakingSet([C, V ])} do

12: ShakingPool = ShakingPool
⋃

s

13: for all [Cx, Vx] ∈ Q(s) do

14: Destination([Cx, Vx]) = Shake([Cx, Vx], s, ShakingPool);

15: if Destination([Cx, Vx]) 6= NULL then

16: Append {T ([Cx, Vx], s,Destination([Cx, Vx])} to SP lan

17: if latency([C, V ], s) ≤ latency([C, V ], S) then

18: Append {T([C,V],S,s)} to SP lan

19: return s

20: end if

21: end if

22: end for

23: ShakingPool = ShakingPool - {s}

24: end for

25: return NULL;

26: end if
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S4 to ShakingPool. As S4 cannot serve [C3, V3] earlier than S4, Cx tries to shake S4 and

adds it to ShakingPool. SPool(V4) contains {S4, S5}. Because S5 can serve V4 earlier than

S4, [C4, V4] is shaken out to S4 and an action T ([C4, V4], S4, S5) is appended to ShakingP lan.

Since S4 can accept [C3, V3], another action T ([C3, V3], S3, S4) is appended to ShakingP lan.

S4 is then removed from the ShakingPool. Since S3 can accommodate [C1, V1] now, an action

T ([C1, V1], S3, S4) is appended to the ShakingP lan and S3 is removed from ShakingPool. Since

all requests have been shaken out, Cx proceeds to execute the actions listed in ShakingP lan.

3.3.3 Executing Shaking Plan

Given a shaking plan, client C tries to execute the listed actions one by one in order

as follows. For each action T ([C, V ], S, S′) in the plan, the client sends server S a message

Transfer([C, V ], S′). Upon receiving such a request, S first checks if request [C, V ] is still in

its service queue. If it is not, the server sends an Abort message to client C. Otherwise, the

server sends a message Add([C, V ], L) message to S′, where L is the expected service latency

of [C, V ] at S. When S′ receives such a message, it checks if it can serve [C, V ] in the next

L time units. If yes, it appends [C, V ] to its service queue and sends to an OK message to

S. Otherwise, it sends an Abort message to S. When S receives an OK message from S′, it

removes [C, V ] from its service queue and sends a message OK to client C. In the case that S

receives an Abort message from S′, it also sends an Abort message to client C. After the client

receives an OK message from S, it continues to execute the next action listed in the shaking

plan. When client C receives an Abort message, it aborts all remaining actions in the shaking

plan.

It is worth mentioning that in the above process, the shaking client does not transfer the

pending requests directly. Rather, the client can only recommend a list of transferring actions:

for each action T ([C, V ], S, S′), the client can only submit it to S. It is S′, the destination

server, that has the final approval on the transferring action, and S′ will not approve unless it

can serve the request [C, V ] no later than S. There are two advantages of this simple approach.

First, it avoids the potential abuse of selfish clients, which may try to generate bogus shaking

plans to get earlier services. The above approach ensures that a request cannot be transferred
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at the compromise of its service latency. Second, this approach does not require a shaking

client to have the latest workload of the servers being shaken. When a client submits an action

T ([C, V ], S, S′) to S, S can inform S′ of the actual value of L, i.e., the expected service latency

of [C, V ] at S.

3.4 Discussions

3.4.1 Implementation Issues

The file lookup techniques used in many structured P2P systems (44)(38)(37)(39)(29) allow

a client to efficiently locate a server that has the file it requests. When such lookup techniques

are adopted for P2P video systems, the cost of building a closure set for a video will not be a

major concern. However, if some flooding-based lookup technique is used, a closure set may

contain many servers and could be expensive to build. A simple way to address this problem

is to apply some threshold control mechanism. For instance, when the number of servers in

the closure set exceeds some threshold, the client can stop searching for new servers. Another

problem is server crashes. When a server crashes, all requests in its queue are lost. With

Shaking, a client request can be transferred from one server to another. Thus, a client may

not be aware that its request is lost. To address this problem, each server can periodically

update its current clients about their expected service latency. If a client does not receive such

information for some time period, it can simply resubmit its request. Finally, a server may

be shaken by several clients simultaneously. In the execution of shaking plans, each request

transfer is treated as one transaction. Thus, a failed request transfer does not affect the requests

that have been transferred successfully. However, when a request transfer fails, the remaining

actions in a shaking plan are aborted. This scenario typically happens when a server is included

by many clients in their closure sets. This problem can be largely avoided by marking a server

when it is included in some closure set. A marked server will then not be included in another

closure set for some time period.
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3.4.2 Multi-source Shaking

We have assumed previously that a client downloads its video from a single source. In reality,

a single source may not be able to upload a video at its playback rate. This is particularly true

since many participating peers access the Internet through last-mile connections such as DSL

and cable modem, which normally have a very limited uploading bandwidth. We extend our

Shaking algorithm for a client to find a set of servers that can provide it with a faster download.

Given a client C that requests video V , the client first constructs SPool(V ) and selects a set of

servers, denoted as server set, from this pool. For each server in server set, the client can then

try to shake out its pending requests using the shaking approach. The servers selected in server

set should be able to allow the client to playback the video at a minimal latency. To construct

such a server set, the client needs to compute the service latency given a set of servers and the

time at which they can start serving the client. This can be done as follows.

Suppose there are n servers in a server set. Each server Si in SPool(V ) has a bandwidth

bi and a service time ti, which is the time when Si can start to serve C. Since the client

knows the service time and bandwidth of each server in the server set, the client can create a

download schedule. To minimize service latency, the download schedule should allow the client

to download from each server as soon as possible and use all of their bandwidth until the video

download is completed. Thus, all servers in server set will finish serving C at the same time.

Without loss of generality, we sort these servers in the increasing order of their service times,

as shown in Figure 3.3. Let d0 = t0 and di = ti − ti−1, where i > 0. After ti time units, the

amount of video data received by the client can be calculated as

Dti =
i

∑

j=1

dj

j−1
∑

k=0

bk. (3.1)

After tn time units, all servers are transmitting different parts of the video and they will

finish at the same time. Suppose it takes T time units for server Sn to finish transmission. Let

b be the play-back rate of the video and L be the length of video. Then T can be calculated as

T =
b ∗ L−Dtn
∑n

i=0 bi
. (3.2)
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From Equation (3.2), we can find the total time taken for the client to receive the entire

video. Let Lt be the total transmission time for video V from all the servers in the server set.

Then, Lt is given by,

Lt = d0 + (tn − t0) + T. (3.3)

Finally, the Service Latency for the client, which is the amount of time the client C has to

wait before starting to play back the whole video is given by

Latency = Lt − L. (3.4)

Consider a client Ci that requests for a video Vi and finds a server S that can serve Vi. Ci

performs a multi-shake on the requests in the request queue of server S to reduce its latency.

Let [C, V ] be the request present in the end of the request queue of Si. Ci performs a search for

the set of servers, SPool(V ) in its search scope that can serve V . Let server set([C,V]) be the

set of servers currently serving the request [C, V ] and candidate set denote the set of servers

that are in SPool(V ) and not currently serving C. Ci continues to add servers from candidate

set if the total bandwidth of all the servers in server set([C,V]) is lesser than the download

bandwidth of C, bC . This process is called Bandwidth Augmentation. Alternatively, if the

aggregate bandwidth of the server set([C,V]) is equal to bC , we try to improve the utilization

of the client’s download bandwidth. This can be done by initiating a multi-shake operation

on the request queues of the servers in candidate set so that they can reduce the latency of

[C, V ]. Algorithm 4 shows how to shake a request [C, V ] in a multi-source model. bx denotes

the bandwidth of a peer x. (A[C, V ], s, ServerSet([C, V ]) denotes a transaction to add the

server s to the server set([C,V]).

3.5 Performance Study

Until now, a client requesting for a video first locates a set of servers and then simply chooses

the one that can provide the least service latency. We call this approach Naive and use it as a

baseline to compare with Shaking in our performance study. We simulate a decentralized P2P
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Algorithm 4 Multi-Shake([C, V ] , S)

1: Server set(C,V) = current server set of the request [C, V ]

2: bserverset = bandwidth of serverset of the request [C, V ]

3: Original Serverset = Server set(C,V)

4: Find SPool(V )

5: Candidate Set = {s | s ∈ SPool(V ) and s /∈ Server set(C,V) }

6: while bserverset < bC and Candidate Set 6= ∅ do

7: Choose that server s that reduces the latency the most when added to bserverset.

8: Candidate Set = Candidate Set - s.

9: Add s to Server set(C,V)

10: Append {A([C,V],s,Server Set([C,V]))} to SP lan

11: if bserverset + bs > bc then

12: bserverset = bserverset + bc − bs
13: else

14: bserverset = bserverset + bc
15: end if

16: end while

17: if there are servers remaining in Candidate Set then

18: Shaking Set = {s | s ∈ Candidate Set and s /∈ Server set(C,V) }

19: if {ShakingSet([C, V ]) = ∅ } then

20: return

21: end if

22: for all server s ∈ Original Serverset do

23: for all server ss ∈ Shaking Set do

24: if s replaced by ss in Original Serverset can reduce latency more than s then

25: Append { T([C,V],s,ss) } to SP lan

26: else

27: for all [Cx, Vx] ∈ Q(ss) do

28: Multi-Shake([Cx, Vx],ShakingPool)

29: if s replaced by ss in Original Serverset can reduce latency more than s then

30: Append { T([C,V],s,ss) } to SP lan

31: return

32: end if

33: end for

34: ShakingPool = ShakingPool - {s}

35: end if

36: end for

37: end for

38: end if
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video system, where a number of servers together cache 100 different videos. Without loss of

generality, each video lasts 60 minutes and is MPEG-I compressed with a constant playback

rate of 1.5 Mbps. We also assume each server has one channel. In reality, a server may have

n channels. When a client finds such a server, it can treat it as n virtual servers, each having

one channel and the same set of videos. We choose average service latency as the performance

metric and study how it is affected by these parameters: request arrival interval, number of

servers, skew of server capacity, skew of video replication, and skew of video popularity. Because

of the space constrain, we report only the performance results under various request arrival

interval and number of servers.

3.5.1 Effect of Request Arrival Interval

In this study, we fixed the number of servers at 500 and varied the request arrival interval

from 20 to 100 second per request. We collected two groups of performance data. In the first

group, we assume the servers are uniform in their capacity, i.e., each server caches a randomized

number of different videos. In the second group, the server capacity has skew of 0.5. Under

both settings, the copies of a video available in the system are generated proportionally to its

popularity. Note that this is the perfect status pursued by many file replication techniques.

Figure 3.5 shows the performance results. It shows that under all scenarios, Shaking outper-

forms Naive to a great extent. For example, when the request interval is 100 seconds/request,

Shaking achieves 0 seconds of service latency. In contrast, Naive still incurs about 100 seconds

of latency. When the request arrival interval increases (i.e., the request rate decreases), the

service latency under both techniques reduces. However, the reduction rate under Shaking is

more significant. Importantly, the figure shows that Naive is quite sensitive to the server skew

and performs better when there is no skew. In contrast, the performance of Shaking is not

affected much by the skew of server capacity. As Shaking dynamically adjusts the match be-

tween clients and servers, the server workload is effectively balanced. Thus, it can be regarded

as a dynamic load balancing technique.
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3.5.2 Effect of Number of Servers

In this study, we fixed the request arrival interval at 60 seconds/request and varied the

number of servers from 100 to 1,000. Similarly, we collected two groups of performance data,

one without server capacity skew and the other with skew at 0.5. Given a fixed client request

rate, increasing the number of servers reduces the average server workload in the system.

Again, under all simulation setting, Shaking performs significantly better than Naive. When

the number of servers is 100, the average service latency under Shaking is less than 50 seconds.

In contrast, Naive incurs nearly 1000 seconds of latency. This study also confirms that Shaking

can effectively handle the skew of server capacity. Such capability is important given the

fact that the hosts participating in P2P sharing are typically heterogeneous in their caching

capacity.
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CHAPTER 4. Conclusion and Future Work

This thesis makes two contributions towards large-scale and cost-effective video services.

• We have presented two novel techniques for periodic broadcast of popular videos. Our first

technique, CCA+ enhances an existing periodic broadcast technique CCA and reduces

the broadcast latency up to 50% as compared to CCA. Our second technique, CCB is

a generalized periodic broadcast approach. At the core of this technique, we propose a

segmentation rule that allows us to design a series of broadcast approaches for a particular

setting of client bandwidth. CCB chooses the fastest periodic broadcast technique among

these approaches. To our knowledge, it is the fastest broadcast technique up to date. We

prove that as soon as a client starts to download the first segment of the video, it can

start to play back continuously till the end in both these techniques.

• We investigate the problem of service scheduling in P2P video systems and propose a novel

technique, called Shaking. This technique is characterized by a few desirable features.

First, Shaking makes it possible for a client to be served by a server that is beyond

the client’s own search scope. Second, the match between the servers and clients can

be dynamically adjusted to minimize client service latency. Furthermore, the proposed

scheme is able to avoid potential abuse of selfish clients, which may try to preempt all

earlier requests in a server. The proposed technique can be used in general to improve

the performance of regular P2P file sharing systems, which to our knowledge do not

consider service scheduling up to date. As indicated by our performance study, an effective

scheduling algorithm is critical to the system load balancing and can significantly reduce

the average service latency.

We envision extending our research along two directions:
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• Adapt CCB for more efficient broadcasting in heterogeneous networking settings. It

is worth mentioning that several techniques, including HeRo (8) and BroadCatch (45),

have been developed for video broadcasting in an environment wherein clients have vastly

different receiving bandwidth.

• Adapt Shaking for segment-based video streaming. The current version of Shaking as-

sumes a client downloads a whole video from one server. In reality, a video may be split

into segments and stored in multiple servers or a server may have a whole video but is

willing to transmit some part of it (because of the upload bandwidth concerned).
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